top of page
Grade 5 Academic Situations
Numbers and Operations
Key Points:
â€‹

Multiplication and division: Fifth graders become advanced in long division, specifically the division of multidigit numbers.

Fractions: Develop fluency in adding and subtracting fractions with unlike denominators. Develop an understanding of fractions, multiplication, and fraction division. Students may also gain an intro to ratios and percentages.

Decimals: Understand the place value system of decimals. Understand operations with decimals. Become proficient in calculating whole numbers and decimals.
Common Struggles:

Losing points on calculations involving carrying/borrowing and computations with zeros.

Lack of proficiency in estimation.

Missing steps and misalignment of format in vertical calculations that involve carrying/borrowing.

Inadequate mental multiplication skills of multiplying multidigit numbers by a single digit in grade 4 leads to slow calculation speed when learning division involving multidigit divisors in grade 5.

Multidigit division involves several processes such as trial division and adjustment of the quotient, which are more complex than calculations in grade 4, often resulting in missed steps and errors.

Multidigit division involves cases with zeros in the middle, frequently leading to misalignment and mistakes in place value.

Insufficient understanding of the underlying principles leads to calculation errors and mistakes on assessments related to these concepts.

While students might become comfortable with adding and subtracting fractions with the same denominator, they frequently encounter difficulties when the denominators differ. The necessity to find common denominators before performing addition or subtraction isn't always intuitive.

The concepts of multiplying and dividing fractions introduce new rules that students must learn. The idea that multiplying fractions can result in a smaller number (since fractions represent parts of a whole) and that division by a fraction involves multiplying by its reciprocal are often sources of confusion.

Addition and subtraction of decimals require alignment of decimal places, which is inconsistent with the previous notion of ""aligning the end position"" learned by students. Children need to spend time understanding why the decimal places need to be aligned for the addition and subtraction of decimals.The examination of problems involving the addition and subtraction of decimals is also quite flexible, requiring children to have a deep understanding of decimal addition and subtraction operations.
Geometry
Key Points:

Graph points on the coordinate plane to solve realworld and mathematical problems.

Classify triangles and quadrilaterals into categories based on their properties.
Common Struggles:

Upon first encountering the coordinate system, it is easy to get confused between the horizontal (xaxis) and vertical (yaxis) coordinates.

It's not easy for students to understand the hierarchy based on properties. Because there are so many 2d figures with different properties.

For example, all rectangles have four right angles and squares are rectangles, so all squares have four right angles.

Measurement and Data
Key Points:

Convert like measurement units within a given measurement system.

Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.
Common Struggles:

Challenging to understand and memorize the relationship between different units within the same system (metric or customary) and how to convert between them, especially when it comes to units of length, volume, weight, and time.

Mastering the calculation of volume (particularly for irregular shapes) can be problematic.
bottom of page